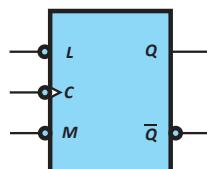


Author Identification Block


Author 1: Mr. Charles Babbage
Student ID 1: *00000001
E-Mail 1: cbabbage@uco.edu
CRN 1: 15437 Autumn 2020
Author 2: Ms. Ada Lovelace
Student ID 2: *00000001
E-Mail 2: alovelace@uco.edu
CRN 2: 13097 Autumn 2020
Course: CMSC 2833 – Computer Organization I
Assignment: a05
Due: October 13, 2020

Scoring block			
Exercise	Maximum	Earned	Explanation
1	3	3	
2	3	3	
3	3	3	
4	3	3	
5	3	3	
Total	15	15	

- Using the steps discussed in Lecture 61, Flip-Flop Design:
 - Design a NAND cell centered LM Flip-Flop specified by the following characteristic table and schematic symbol.

L	M	$Q(t)$	$Q(t+1)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

LM Flip-Flop Characteristic Table

LM Flip-Flop Schematic Symbol

Solution:

- Define the excitation table for the LM Flip-Flop.

Solution:

- A Null-Lobur Flip-Flop (*NL* Flip-Flop) behaves as follows: If $N = 0$, the Flip-Flop does not change state. If $N = 1$, the next state of the Flip-Flop is equal to the value of L .

- Derive the characteristic table for the *NL* Flip-Flop.

Solution:

- Show how an *SR* Flip-Flop can be converted to an *NL* Flip-Flop.

Solution:

- Using the steps discussed in Lecture 62, Flip-Flop Conversion, convert a D-Latch to a JK Flip-Flop.

Solution:

- Using the steps discussed in Lecture 62, Flip-Flop Conversion, convert a RS to a LM Flip-Flop.

Solution:

- Using the steps discussed in Lecture 62, Flip-Flop Conversion, convert a JK Flip-Flop to a D-Latch Flip-Flop.

Solution: